A classification of unitary invariant weakly complex Berwald metrics of constant holomorphic curvature
نویسندگان
چکیده
منابع مشابه
Para-Kahler tangent bundles of constant para-holomorphic sectional curvature
We characterize the natural diagonal almost product (locally product) structures on the tangent bundle of a Riemannian manifold. We obtain the conditions under which the tangent bundle endowed with the determined structure and with a metric of natural diagonal lift type is a Riemannian almost product (locally product) manifold, or an (almost) para-Hermitian manifold. We find the natural diagona...
متن کاملStrictly Kähler-Berwald manifolds with constant holomorphic sectional curvature
In this paper, the authors prove that a strictly Kähler-Berwald manifold with nonzero constant holomorphic sectional curvature must be a Kähler manifold.
متن کاملHolomorphic Curvature of Finsler Metrics and Complex Geodesics
If D is a bounded convex domain in C , then the work of Lempert [L] and Royden-Wong [RW] (see also [A]) show that given any point p ∈ D and any non-zero tangent vector v ∈ C at p, there exists a holomorphic map φ:U → D from the unit disk U ⊂ C into D passing through p and tangent to v in p which is an isometry with respect to the hyperbolic distance of U and the Kobayashi distance of D. Further...
متن کاملHolomorphic embedding of complex curves in spaces of constant holomorphic curvature.
A special case of Wirtinger's theorem asserts that a complex curve (two-dimensional) holomorphically embedded in a Kaehler manifold is a minimal surface. The converse is not necessarily true. Guided by considerations from the theory of moduli of Riemann surfaces, we discover (among other results) sufficient topological and differential-geometric conditions for a minimal (Riemannian) immersion o...
متن کاملClassification of Totally Umbilical CR-Statistical Submanifolds in Holomorphic Statistical Manifolds with Constant Holomorphic Curvature
In 1985, Amari [1] introduced an interesting manifold, i.e., statistical manifold in the context of information geometry. The geometry of such manifolds includes the notion of dual connections, called conjugate connections in affine geometry, it is closely related to affine geometry. A statistical structure is a generalization of a Hessian one, it connects Hessian geometry. In the present paper...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Differential Geometry and its Applications
سال: 2015
ISSN: 0926-2245
DOI: 10.1016/j.difgeo.2015.08.001